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Abstract

An analytical model is given for the thermal conductivity of a bed of solid spheroidal particles in static gas, when
the conductivity of the solid is substantially greater than that of the gas. It has two ®tting parameters, the width
and average radius of the narrow gaps that exist between the irregularly shaped particles and which contribute
signi®cantly to the thermal conductivity. Since both parameters are physically measurable, the model holds the

potential for calculating the thermal conductivity without any adjustable parameters. Agreement is excellent with
measurements on alumina particles in helium at 100±5008C up to 100 kPa pressure. # 2000 Elsevier Science Ltd.
All rights reserved.

1. Introduction

There is considerable interest in the thermal conduc-

tivity of beds of solid spheroids in the presence of a
gas. Such beds have been proposed for thermal insula-
tion [1,2] and as the breeder blanket about a fusion
reactor [3], and are also of interest as beds for chemi-

cal reactions [4] and in drying processes [5].
The present experimental data with alumina spher-

oids was taken to test new apparatus for measurements

on materials of interest in fusion reactors. The data
agrees well with earlier results at discrete temperatures
[6,7], and a modi®ed form of the apparatus has been

used subsequently with lithium zirconate spheres [8].
Numerous analytic models have been developed

for calculating the e�ective thermal conductivity of
packed pebble beds in the presence of a static gas.

Examples are the models by Hall and Martin [9]
referred to as HM, and the model of Zehner, Bauer
and SchluÈ nder [10] referred to as ZBS. Three recent

evaluations of a number of these models have been
carried out by Tsotsas and Martin [11], Funda-
menski and Gierszewski [12], and Xu et al. [13].
The ®rst two studies concluded that a modi®ed

form of the ZBS model [10] did the best job of
describing the experimental data. The third study
found serious de®ciencies with all three analytic

models tested, and concluded that the UCLA two-
dimensional, ®nite-element model [14] gave the most
reliable predictions using reasonable parameters.

However, none of the analytic models considered in
the latter two surveys gave consistent values of the
®tting parameters when applied to the present

alumina data (®nite-element models were not tried).
An examination of our data, as discussed below,
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led us to the conclusion that long-range surface

undulations (as opposed to short-range roughness)

will allow two adjacent particles to be in contact at

more than the one point normally assumed, result-

ing in extended areas with gaps between the par-

ticles which may be comparable in width to the gas

mean free path. Although these areas are typically

much smaller than the cross section of the particle,

the narrow gap results in a contribution to the

thermal conductivity that is often larger than from

the gas outside of these gaps.

The ZBS model is a very general one which accom-

modates a range of particle geometries from spheres to

cylinders. It does include a contribution from the

narrow gaps, but de®nes their e�ective size in terms of

the bed porosity in a way which is not easily related to

the physical dimensions of the gaps, which can vary

dramatically depending on the smoothness of the

spheroids. It also includes conduction through the con-

tact between particles by introduction of a ``¯attening

coe�cient'' f which is essentially the fraction of the

spheroid cross-sectional area which is in contact with

an adjacent particle. The HM model includes essen-

tially the same expression as in the ZBS model for the

evolution of the gaseous thermal conductivity from

that at low pressures to that at high pressures, but

Nomenclature

a accommodation coe�cient
B average radius of the area deli-

neated by the points of contact

of two spheroids
Cv heat capacity per molecule at

constant volume

CP heat capacity per molecule at
constant pressure

d gap between two surfaces con-

®ning the gas
D molecular diameter
fj Gaussian weighting factor for

the area of a gap of width gj
g ``inner'' gap width in the single-

gap model
gav average ``inner'' gap width in

the multiple-gap model
gj average gap width in the jth

Gaussian bin

G total conductance of one cell
Gc conductance through the contact

points between spheroids

Gi gas conductance through the
``inner'' gap, of average width
gav, between particles

GiM gas conductance through all the

inner gaps, in the multiple-gap
model

Go gas conductance through the

gap outside the area delineated
by the points of contact

Gr conductance between spheres by

radiation
Gs conductance through the solid

sphere
hr average height of the short-

range roughness

j temperature jump distance at a
surface

k Boltzmann's constant

Ke� e�ective thermal conductivity of
the packed bed

n molecular number density

(n=P/kT )
P gas pressure
Pr gas Prandtl number

Q
.

heat ¯ow in watts
r1, r2 radii at which the temperature is

measured in determining Ke�

rc average radius of the area of the

contact points between two
spheres

R average radius of a spheroid

Rc correlation coe�cient from a re-
gression analysis

T temperature in Kelvin

v- average molecular velocity

Greek symbols

ac, ae, ai, ao, ar, as geometrical correction factor for
the conductances Gc, G, Gi, Go,
Gr and Gs, respectively

b factor to correct for the linear

term in [1ÿexp (ÿ3 g/2l )] at
low values of g/l

g the ratio CP/CV

d area of direct contact between
adjacent spheroids

E thermal emissivity of alumina

s standard deviation of the Gaus-
sian distribution of gap widths

sS Stefan±Boltzmann constant
l molecular mean free path

y polar angle
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does not include the extended narrow gaps. One of the
problems with both these models is that, to obtain

acceptable ®ts to experimental data, they require
unreasonably large values for the contact area between
adjacent particles. For example, Enoeda et al. [15]

have ®tted their data on several materials using the
ZBS and HM models. These ®ts required contact radii
of typically 0.7% of the pebble diameter, which are

substantially higher than would be expected from the
elastic moduli and the weight of the particle beds. The
problem with obtaining reasonable values for the con-

tact area from these models has also been noted by Xu
et al. [13], who obtained acceptable ®ts to beryllium
data with a ®nite element model with the assumption
of point contact only.

No analytic model was found that incorporated the
narrow gaps satisfactorily, so a new model has been
developed. (Adnani et al. [16] and Xu et al. [13] have

included local surface roughness in their ®nite-element
analyses, but did not include the longer-range surface
undulations.) The new model in its most general form

provides a good ®t to our experimental alumina data,
with relatively few ®tting parameters, all of which have
clear physical signi®cance and reasonable values. The

number of ®tting parameters can be reduced to two
without signi®cant change in the quality of ®t, with
both parameters being measurable from the spheroids,
in principle. The 2-parameter model also provides an

excellent ®t to the data reported by Xu et al. [13] for
the conductivity of beds of beryllium spheres in the
presence of He and N2 gases, with no ®tting par-

ameters in the latter case.

2. Apparatus

The experimental apparatus was a cylinder contain-
ing an axial heat source surrounded by the alumina.

Thermocouples were imbedded in the alumina at
di�erent radial positions to measure temperatures. For
this geometry, under steady state conditions and ignor-

ing end e�ects, the heat ¯ow outwards through a
cylindrical surface of radius r and length l is

_Q � ÿ2prlK�T �dT
dr

�1�

where T is the temperature at radial position r and

K(T ) is the local e�ective thermal conductivity. Inte-
grating, one obtains a mean e�ective thermal conduc-
tivity Ke� between two radial positions r1 and r2 at

which the temperatures are T1 and T2, respectively,
with

Keff �
_Q

2pl
ln�r2=r1�
T1 ÿ T2

: �2�

The cell used in these experiments, and sketched in

Fig. 1, consisted of a vertical pyrex tube with an inside
diameter of 88.9 mm and a wall thickness of 3.18 mm
with 150-mm diameter stainless-steel con¯at ¯anges

connected to each end through glass-to-metal seals.
Overall length of the cell between con¯ats was 648 mm.
(This cell failed by fracture of the pyrex tube as the ex-

periments were being concluded. The tube was
replaced by an inconel one for subsequent experiments
on lithium zirconate beds [3,8].)
The cell was connected to a 44-liter gas cylinder held

at the same pressure as the cell but at room tempera-
ture, which acted as a ballast to hold the pressure in
the cell essentially constant as the cell temperature was

changed. The changes in pressure as the cell (and
room) heated were too small to require corrections to
the results.

The principal heat source for the cell consisted of re-
sistance wire wound around a hollow mullite rod
(IMUL900, Abar-Ipsen of Pecaponia, IL) with outside

diameter 19.1 mm and wall thickness 3.18 mm, which
was coaxial with the pyrex cylinder. The resistance
wire (A1 Kanthal, of resistance 1.119 O/m) was posi-
tioned uniformly on the mullite rod by means of a

spiral groove in the mullite rod, with approximately
350 grooves/m. The thermal conductivity of IMUL900
was given as ranging between 2 and 10 W mÿ1 Kÿ1.

Fig. 1. Cross section of the thermal conductivity cell.
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The outside of the cell between the con¯at ¯anges

was wrapped with a heavily insulated heater tape, to
reduce the radial temperature gradient across the bed.
Although the tape was not powered when the pressure

of He in the cell was greater than 3 kPa, it did insulate
the cell su�ciently well to reduce the overall radial
temperature di�erence by more than 1008C when the

temperature at the innermost thermocouple was above
4008C. To minimize the longitudinal temperature gra-

dients across the glass-to-metal seals and reduce axial
heat ¯ow within the cell, the upper con¯at ¯ange was
wrapped with rock-wool insulation to extend the cylin-

der of insulation above and below the end ¯anges by
about 7 cm. The lower con¯at ¯ange and the clamp in
which it was held were wrapped with another heavily

insulated heater tape.
The electrical power supplied to the axial heater, to

the heater tape which wrapped the cell, and to the hea-
ter tape which wrapped the base, was adjusted by
three variacs. The electrical power dissipated in the

axial heater was determined by measuring the ac cur-
rent and the potential between voltage taps which were

welded to the resistance wire 50 mm above and below
the longitudinal centre of the axial heater. Voltage taps
near the cell centre were used to obviate resistance

changes in the heater wire with temperature.
Temperatures inside the cell were measured with

type-K thermocouple probes from Omega Engineering.

The thermocouple junctions and lead wires were con-
tained within, and electrically insulated (with MgO)

from, inconel sheaths whose outside diameter was
0.25 mm. The probes were silver-soldered into hypo-
dermic needles which had been welded into the bottom

con¯at ¯ange.
Cotton threads were used to hold the thermocouple

probes in position while the cell was being ®lled with
the ceramic spheres. When the cell had been ®lled to
the point where the end of a thermocouple probe was

only a few millimetres above the level of the alumina,
the radial position of the end of the probe relative to
the heater core was measured through the pyrex wall

using a travelling microscope. Optical distortions due
to the curvature of the pyrex tube were shown to be

negligible by measuring the positions of the gradu-
ations on a scale placed inside the cylinder. The ®lling
of the cell with alumina was then completed and the

threads from the thermocouples cut o�. In order to
minimize the e�ect of changes in packing density near
the walls, the radial positions of the innermost and

outermost thermocouples were chosen to allow about
2 sphere diameters between these thermocouples and

the axial heater or cell wall, respectively. The cell was
always operated for at least 30 min before any
measurements were taken, to allow time for vibrations

from the pumping system to increase the cell packing.
Six thermocouple probes were installed inside the

cell. Three of these, denoted M1, M2 and M3, were
located in the mid-plane of the cell, with M1 nearest

the heater, M3 nearest the cell wall, and M2 roughly
halfway between M1 and M3. In order to check for
longitudinal variations in temperature, B1 and B3 were

located 50 mm below the mid-plane, while T1 was
located 50 mm above the mid-plane; B1 and T1 were
nominally at the same radial position as M1, and B3

as M3.
The amount of He gas in the cell and ballast was

adjusted to give a desired pressure, and then not chan-

ged until the thermal conductivity was measured over
the full range of temperature. The thermal conductivity
of the beds was measured for pressures of roughly 100,
40, 11, 5 and 0 (<1 � 10ÿ5) kPa. The pressure was

measured with a Matheson gauge, model 63-5601,
which reads from 0 to 100 kPa with a resolution of 0.2
kPa. During the experiments it was discovered that the

pressure indicated by the gauge varied as a function of
barometric pressure. Therefore, after completion of ex-
periments, the gauge was calibrated against a Baratron

capacitance manometer (type 122A, model 5000). The
correct pressure was found to be given within 0.2 kPa
by

P � 1:008PM � 1:025�PB ÿ 100:5� �3�
where PM is the reading from the Matheson gauge and
PB is the barometric pressure. All pressures reported

here have been corrected in this manner, using values
of barometric pressure recorded at the time of the ex-
periment or obtained from local weather records.

3. The alumina spheroids

Experiments were carried out on two di�erent

ranges of sphere size, and of slightly di�erent chemical
composition. Physical characteristics of these spheres
are given in Table 1, as provided by the supplier, US

Stoneware, Mahwah, NJ, except for the average diam-
eter and ratio of diameters which were measured in
our laboratory.

Also appearing in Table 1 is the packing fraction for
the spheres. This number was measured by comparing
the mass and volume of a quantity of spheres con-
tained in a vessel, with dimensions similar to those of

the cell, with the values of speci®c gravity supplied by
US Stoneware. The before-tapping packing fraction
was obtained by simply pouring the spheres into the

vessel to a predetermined level. The after-tapping value
was determined after the vessel had been repeatedly
tapped against the ¯oor until the level of the spheres

stabilized (about 50 or 60 taps). The tapping com-
pressed the volume of the smaller spheres by 10.3%
and the volume of the larger spheres by 5.5%. When
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examined under a microscope the smaller spheres
appeared to be less spheroidal than the larger ones,

which may have a�ected the packing density. No
measurements were taken to determine the packing
fraction of the spheres under the actual experimental

conditions, but it is expected that vibrations from the
pumping system and thermal cycling would increase
the packing fraction to a value near the after-tapping

value. The diameters of about 100 spheroids from each
group were measured with calipers, and the ratio
obtained of two, randomly selected, perpendicular di-

ameters for each spheroid to give a rough measure of
oblateness and/or long-range irregularities. These
values are also recorded in Table 1. The uncertainties
given represent one standard deviation throughout this

paper.

4. Experimental results

The thermal conductivity data for the 1-mm spheres
are displayed as the solid points in Fig. 2 which shows
the mean e�ective thermal conductivity between ther-

mocouples M1 and M3 as a function of the average
temperature of M1 and M3. The corresponding results
for the 3-mm spheres are given in Fig. 3. The open

points represent the work of other researchers and the
lines are theoretical ®ts to be discussed later. The ex-
perimental results of Sordon [7] for alumina spheres
with diameters of 1-mm, 2-mm and 4-mm in 100 kPa

of helium, obtained by a similar technique, are
included in Figs. 2 and 3. Each of Sordon's data points
is an average of results obtained at two di�erent axial

positions. Fig. 2 also shows the results of McElroy et
al. [6] for 0.5-mm-diameter spheres at 300 K and 100
kPa. Values for thermal conductivity calculated using

the adjacent pairs of thermocouples, M1±M2 and M2±
M3, gave plots similar to those in Figs. 2 and 3, but
with more scatter since small ¯uctuations in the ther-

mocouple positions produced a larger percentage error
in the calculated thermal conductivity.

5. Discussion of experimental uncertainties

Kreith [17] discusses a calculation for horizontal
convection between vertical parallel plates in the
absence of any vertical temperature gradients. He

shows that heat ¯ow by convection is negligible pro-
vided that the dimensionless Grashof number, Gr, is
less than 8000. Gr for our beds can be estimated cru-

dely by choosing the distance and temperature between
the parallel plates in Kreith's discussion to be the aver-
age pore size between the alumina spheres and the

Table 1

Physical characteristics of the alumina spheroids

Nominal diameter 1 mm 3 mm

Range of sphere diameters (mm) 0.85±1.40 2.36±3.35

Average diameter (mm) 0.93620.06 2.7020.17

Ratio of perpendicular diameters 1.0620.06 1.0420.04

Chemical composition (%) Al2O3 96.34 85±90

SiO2 2.75 8±10

MgO 0.6 1.5

Speci®c gravity 3.64 3.48

Porosity (%) 0.0 0.0

Packing fraction (%) Before tapping 51.4 55.0

After tapping 56.7 58.0

Fig. 2. E�ective thermal conductivity for 1-mm alumina

spheres; numbers on the ®gure are pressures in kPa. Solid

points: experimental data of this paper. Open points: other ex-

perimental data; (r) 0.5-mm spheres in 100 kPa He [6], (w) 1-

mm spheres in 100 kPa He [7]. Lines are ®ts with the mul-

tiple-gap model: Solid, ®tting gav, B, s, ae, ao, and a. Dashed,

®tting gav and B. Dotted, uses gav and B from ®t to the T =

573 K data.
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typical temperature drop across this distance. This

gives Gr 1 7� 10ÿ10, showing that convection is negli-

gible compared to gaseous conduction.

Other sources of uncertainty in the experimental

values of Ke� are discussed below. The possible errors

from these have been summarized in Table 2. The

values calculated for Ke� from Eq. (2) show increased

uncertainty at lower temperatures because of relatively

smaller values of T(r1)ÿT(r2); however, the uncertainty

in Ke� from this source drops to below 3% above

2008C.
The line voltage which powered the axial heater and

heater tapes was not regulated. Toward the end of the

experiments it was realized that the line voltage ¯uctu-

ated as much as 3% over a period of 2 h or 5% over

6 h. A change in line voltage of 3% resulted in a

change in power to the core heater of 6%. Because the
response time for the cell for such a change is of the

order of 3±4 h, and because most data were taken at

about 9 a.m. when line voltage was changing relatively

quickly, the ¯uctuations in line voltage resulted in an

uncertainty of about 5% in calculated values of ther-

mal conductivity.

The measured distance between the voltage taps

(100 mm) could be in error by as much as 1.5 di-

ameters of the resistance wire. This would contrib-

ute a systematic uncertainty of 2% to experimental

values of Ke�.

Uncertainties in the measurement of the thermo-

couple voltages and di�erences in the temperature

of the cold junctions (at room temperature) resulted

in a maximum error of 10% in the runs near 608C,
2% at 1008C, and less than 1% above 3508C.
The measurements of thermocouple positions were

accurate to within 0.1 mm at the time that the

measurements were taken. If it is assumed that the

position of a thermocouple could be perturbed by

0.5 of an average sphere diameter as the bed

settled, this would result in an uncertainty in ther-

mocouple position of 0.5 mm for the smaller spher-

oids and 1.4 mm for the larger ones. This would

lead to an uncertainty in Ke� of 1.5% for the 1-mm

spheres and 4.3% for the 3-mm spheres for mean

values of thermal conductivity calculated between M1

and M3.

In order to minimize axial heat loss from the

central region of the cell by conduction through the

bed along the length of the cell, the length of the

axial heater was chosen to be long compared to the

cell diameter. It has been shown by analysis [18]

that the error due to non-radial heat ¯ow at the

cell centre, because of conduction through the ends,

is less than 0.5% for a length-to-diameter ratio

greater than 4. This ratio was 5.7 for the cell used

in these experiments.

Computer modelling of heat ¯ow within the exper-

imental cell was carried out at the Canadian Centre

for Fusion Fuels Technology using the ANSYS-PC/

THERMAL ®nite element package, in the 2-D axis-

Fig. 3. E�ective thermal conductivity for 3-mm alumina

spheres; numbers on the ®gures are pressures in kPa. Solid

points: experimental data of this paper. Open points: other ex-

perimental data; (w) 2-mm spheres and (r) 4-mm spheres in

100 kPa He [7]. Lines are as in Fig. 2.

Table 2

Summary of relative errors in experimental values of Ke� (Ke� calculated from the di�erence in temperature between M1 and M3)

1-mm spheres (%) 3-mm spheres (%)

Source of error Below 1008C Above 1008C Below 1008C Above 1008C

Power 5 5 5 5

T1ÿT2 10 1 10 1

Pressurea 2±5 2±5 2±5 2±5

ln(r1/r2) 2 2 4 4

Axial loss < 1 < 1 < 1 <1

Net error 11±13 6±8 12±13 7±8

a The 5% uncertainty from pressure applies only to the 10 kPa values.
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symmetric mode. Results show that temperatures
measured at the three mid-plane thermocouples should

be within 1.58C of the measurements that would be
obtained if the cell were in®nitely long. Because exper-
imental values for thermal conductivity are calculated

from the di�erence in temperature between thermo-
couples, it is concluded that the errors in these calcu-
lations due to axial heat loss are negligible. There are

two potential sources of axial heat loss other than
axial temperature gradients in the alumina. These are
axial conduction of heat along the heater (mullite and

resistance wire) and convection currents inside the mul-
lite tube. Calculations similar to those of Ref. [1] show
these to be negligible.
To provide a means of checking for axial tempera-

ture gradients experimentally, thermocouples were
located above and below the midplane of the cell as
discussed above. By rearranging Eq. (2) and assuming

constant thermal conductivity as taken from Figs. 2
and 3, the temperature at any radial position r in the
central plane of the cell can be calculated if the tem-

perature at a speci®c location in the central plane r1 is
known, with

T�r� � T�r1� ÿ
_Q

2plKeff

ln

�
r

r1

�
: �4�

Taking T(r1) to be the temperature at M1, Eq. (4) was
used to calculate the temperatures that would be

expected at the radial positions of thermocouples B1,
T1 and B3 if there were no axial temperature gradi-
ents. The di�erences between the calculated and

measured temperatures at these positions were negli-
gible, which is consistent with the ®nite-element analy-
sis.

6. New theoretical model and analysis of data

6.1. Single-gap model

The main evidence for the need to include surface
irregularities is seen in the data points of Fig. 4 for the

1-mm spheres, which shows Ke� as a function of press-
ure P at a constant temperature of 573 K, as interp-
olated from Fig. 2. A similar curve was obtained from
Fig. 3 for the 3-mm spheres. The only parameter that

can change under these conditions is the number den-
sity n=P/kT of the gas molecules (k is Boltzmann's
constant), which a�ects only the mean free path of the

molecules given by l=(Z2npD 2)ÿ1 [19, p.178], where
D = 0.218 nm is the diameter of the He atom [20,
p.266]. However, the thermal conductivity of a gas is

independent of pressure when l is much less than the
average distance d between two con®ning surfaces.
Therefore Fig. 4 clearly shows the evolution from l >
d to l< d at a pressure of about 20 kPa, which corre-

sponds to a value of l of 1.9 mm. Since for perfectly
smooth spheres the only length in the problem is the
sphere radius, it is obvious that a new length scale of

order 2 mm must be introduced to explain the results
of Fig. 4. The most likely possibility is the depth of
long-range undulations in the surface, and electron

micrographs con®rm they exist and have the correct
order of magnitude. Note that one cannot explain the
results of Fig. 4 as being due to the small gap near the

point of contact for perfectly smooth spheres; for this
case the area corresponding to l > d decreases as n
increases at exactly the rate to make the conductivity
in this region independent of pressure. Neither can

Fig. 4 be explained by short-range roughness a few
microns in height, since the narrow-gap area associated
with this would generally be too small to make a sig-

ni®cant contribution.
Some theories [5,9,10,21], have included the initial

increase of Ke� as P is increased from zero by model-

ling the heat transfer per unit area per second between
two parallel plates separated by a small gap d, per
degree temperature di�erence between them, by the ex-

pression

Kg=�d� 2j � �5�

where j is the temperature ``jump distance'' given ap-

proximately by j � �2=aÿ 1� 2
g�1Prl [19, p. 314]. Here

Kg is the gas thermal conductivity at high pressure
(l < <d ); the accommodation coe�cient a is the

energy exchange which occurs when a molecule collides
with the surface, expressed as a fraction of its value
for thermal equilibration. g0CP/CV is the ratio of the

gas heat capacities at constant pressure and volume re-
spectively, and Pr is the gas Prandtl number
(Pr 0 ZCP/Kg) with Z being the gas viscosity. For

Fig. 4. E�ective thermal conductivity at 573 K for 1-mm

alumina spheres. Points: experimental data. Line: theoretical

®t to determine gav and B.
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helium, j 0 2l, so j is larger at low pressures. As P
increases, l decreases and the value of expression (5)

increases from zero to Kg/d, giving a transition to a
constant conductivity as occurs in the data points of
Fig. 4. However, expression (5) is derived [5; 19, p.

314] under the assumption that there is a well de®ned
temperature gradient in the gas between the two plates,
which is true only if d > l, and so does not apply in

the case of very low pressure.
Our model assumes primitive tetragonal packing of

the spheroids of average radius R, with a unit cell of

area 4R 2 perpendicular to the direction of heat ¯ow
and of length 2aeR, as sketched in Fig. 5. Here ae is a
geometrical correction factor somewhat less than
unity, to allow for the fact that the packing is expected

to be denser than tetragonal. Parameter g is the aver-
age width of the gap near the points of contact
between the spheres; that is, g is a measure of the

depth of the surface undulations of the spheres
between adjacent points of contact, and is a few mm in
magnitude as discussed above, so g < <R. The pack-

ing density is given in Table 1 as 56.7% for the small
spheres and 58.0% for the large ones. This compares
to values of 52.4, 68.0 and 74.0% for simple cubic,

body-centred cubic and close-packed uniform spheres,
respectively. Therefore, the average spacing between
spheres should be close to that for simple cubic, and ae
is expected to be about 52/5700.9.

Ke� is modelled as shown in Fig. 5 in terms of ther-
mal conductances G, where the heat ¯ow between a
temperature di�erence DT across a planar gap of

width Dx and area A would be given by Q
.
=

KADT/Dx=G DT. This equation has the form of Ohm's
law, so the conductances can be summed in the same

manner as series and parallel electrical conductances.
At a pressure of 100 kPa, the conductance of an

alumina sphere is signi®cantly larger (16 to 4 times)
than the sum of the conductances between adjacent

spheres, as the temperature varies from 300 to 800 K.
Consequently, we assume that each sphere is at a

roughly constant temperature, with most of the tem-
perature drop occurring in the gap between the

spheres. This assumption becomes even more correct
for pressures below 1 atm. The overall conductance
can be expressed as a combination of series and paral-

lel conductances: Gs is the relatively high conductance
across the sphere, Gc is the conductance through the
points of direct contact between the two spheroids, Gr

is the radiation term, Gi accounts for heat ¯ow
through the gas in the ``inner'' gap of average width g
and average radius B<<R, and Go for the gas in the

``outer'' gap of width of order R. If T1 and T2 are the
temperatures of the mid-points of the two spheres, we
can de®ne the e�ective conductivity over the entire cell
using

_Q � Keff4R
2 �T1 ÿ T2�

2aeR
� G�T1 ÿ T2� �6�

where

G � Gr � Gs�Gpar�
Gs � Gpar

with Gpar � Go � Gi � Gc: �7�

That is, Gs is in series with the parallel combination of
Go, Gi and Gc, with all this in parallel with Gr. Note
that Go has been included in parallel with Gi and Gc

rather than in parallel with Gr, because the major con-
tribution from Go will be where the gap is the smallest.
This choice provides a slightly better ®t to the data

than placing Go in parallel with Gr, although clearly
either is a compromise with reality; however, because
Gs is so large there is little e�ective di�erence between

these two choices. For the results obtained in vacuum
where Go and Gi are zero and using Gs>>Gc, this
becomes

G � Gr � Gc �8�

to better than 1%. The individual expressions for the

conductances are as follows:

Gs � KsaspR2=2R, Gc � Ksacd=hr,

Gr � 4ss

2=Eÿ 1
ar4R

2T 3, Gi � KgiaipB 2=g,

Go � Kg�1ÿ exp�ÿR=l��aop�R2 ÿ B 2�=R
1 Kg�1ÿ exp�ÿR=l��aopR: �9�

Physically, a conductance is the thermal conductivity

for that mode of heat transfer, multiplied by the aver-
age value of the conduction cross-sectional area
divided by the path length; hence the as are geometri-

cal factors of order unity. Kgi is the gas conductivity
for l comparable to g, as de®ned by Eq. (12) below.
sS is the Stefan±Boltzmann constant, E is the emissivity

Fig. 5. Schematic for the one-gap model. The heat ¯ow is

downwards; symbols are de®ned in the text.
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of the alumina pebble surface taken to be 0.75 [22, p.
6-157], d is the actual area of contact between the two

spheroids, and hr is the average height of the short-
range roughness and used as the length of the solid
``neck'' between the spheres at a contact point. Kg is

the thermal conductivity of a gas when l<< g, namely
[19, p.178]

Kg � 25p
64

n �vlCv � 25p
64

�v
1���
2
p

pD2
Cv �10�

where Cv is the heat capacity per molecule (3k/2 for

He), v-=(8kT/pM )1/2 is the average speed of a mol-
ecule and m is its mass. The factor 1 ÿ exp(ÿR/l ) in
Eq. (9) removes Go from the expression for Ke� when
P=0.

When l>> g, gas molecules can traverse the gap
without undergoing collisions with other molecules.
The thermal conductivity of the gas then becomes

[19, p. 317],

Kl�g � a

2ÿ a

g� 1

8
n �vCvg �11�

where l=5/3 for He. Therefore, the gas thermal con-
ductivity in the narrow gap must vary from the low-
pressure limit of Eq. (11), which is linear in n, to the
high-pressure limit of Eq. (10), which is independent of

n, in some smooth fashion as g/l increases as the
pressure increases. Because the distance x travelled by
a gas molecule without a collision varies as exp(ÿx/l ),
it is reasonable to assume that the transition from
Kl<<g to Kg will depend in a similar way on the ratio of
g/l. The transition form used is given in Eq. (12),

where b includes a correction for the linear dependence
on n which appears at low values of n in the ®rst term:

Kgi � Kg�1ÿ eÿ3g=2l� � bgeÿ3g=2l �12�

where

b �
�

a

2ÿ a

g� 1

8
ÿ 3

2
� 25p
64

�
n �vCv: �13�

The factor of 2/3 in the exponent in Eq. (12) accounts
for the angular dependence of the molecular paths [20,

p. 264]. Note that Kg (and therefore Go) varies as T
1/2,

whereas Kgi (and therefore Gi) varies as Tÿ1/2 at low
pressures and T 1/2 at high pressure. As mentioned ear-

lier, Eq. (5) also gives the correct transition from the
high- to the low-pressure limits. However, this
equation was derived under the assumption that l<< g

which is not satis®ed over most of the pressure range
of interest, and it gave a substantially inferior ®t to
our experimental data of Fig. 4 than did Eq. (12).

We estimate as=2.0 using the geometry of Fig. 6
assuming the heat ¯ow follows straight paths through
the spheroid, by integrating the annular area divided
by the path length 2pR 2 sin y cos y dy/(2R cos y ) and
dividing by pR 2/2R. This value of as is used from now
on. Similarly, we calculate ao for conduction across the
outer gap between adjacent spheroids by using Eq. (5)

and integrating 2pR 2 sin y cos y dy/[2R(1 ÿ
cos y )+2hr+2j ] where y varies from yo0B/R to p/2,
and dividing by pR 2/R to give, for B/R<< 1,

ao � ÿ1ÿ ln

"
1

2

�
B

R

�2

�hr

R
� j

R

#
: �14�

Note that it is necessary to include the roughness

height hr to prevent ao from blowing up for small
values of B and j, since the roughness will keep the
gap between the two particles ®nite even if the long-

range undulations and temperature jump distance are
negligible. Since (B/R )2/2>> hr/R in this paper, the
term in hr has been ignored in calculations. Using the

value B = 94 mm for the small spheres (as obtained
below for the 1-gap model in Table 4) and a typical
value of j03.8 mm for He at 20 kPa and 573 K gives
ao=2.56 if hr is assumed to be zero, and 2.30 if

hr=4 mm. Because of the logarithmic variation, this
value will change only slowly as changes in pressure
and temperature vary l. However, the calculation of

Eq. (14) assumes that the pebbles remain spherical
beyond their contact points separated by 2B, and this
assumption has to be evaluated when the data is ®tted

using measured values for g and B. Note that,
although the average ``outer gap'' between the two
spheres is 2R/3, the value of ao is dominated by the
region of smallest gap, so that the j/R term in Eq. (14)

a�ects the value of ao signi®cantly at low pressures.
We ®rst ®t the P = 0 curves of Figs. 2 and 3 using

Eqs. (6), (8) and (9). For Ks we used a quadratic ®t to

experimental data for bulk alumina from the supplier
in the temperature range 423±1073 K, namely
Ks=32.7ÿ0.0329T + 1.23 � 10ÿ6T 2 for material of

96% alumina (the small spheroids) and
Ks=24.4ÿ0.0341T + 1.38 � 10ÿ5T 2 for 90% alumina
(the large spheroids); note that Ks decreases with tem-Fig. 6. Geometry for the calculation of as.
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perature in the range of this experiment. It has been

shown [21] that, even for high-density ceramics, the
presence of micro-cracks can have a pronounced e�ect

on the bulk thermal conductivity as a function of

pressure. However, this should not be a serious pro-

blem here because (a) the alumina spheres are reported

to be near zero porosity and (b) the conductance Gs is

typically ten times Go+Gi with which it is in series, so
that small changes in Gs will have little e�ect on the

overall conductance. For the small spheres, the ®t of

Eq. (6) to the P= 0 curve produces the dashed line in

Fig. 7; the solid line is the best ®t assuming radiation

only. A similar plot was obtained for the large spheres,

except that the ®tted value for Gc was totally negligible
compared to Gr for the 3-mm spheres so the two lines

superimposed. The values found for aeacd/hr and aear
are given in Table 3; note that most of the ®tted par-

ameters in this paper are given to one more signi®cant

®gure than is justi®ed by the statistical uncertainty, in

order to give the actual values used in the ®ts. These

results show that the conduction through the points of
contact is negligible compared with radiative transfer.

Moreover, the uncertainties in aeacd/hr make these

®tted values meaningless. Therefore, the contact term

Gc will be dropped from further calculations reported

here. Including Gc changes these results negligibly.

The values about 3 obtained for aear are of order

unity as required, but are larger than expected given

the value of 0.9 for ae suggested earlier. A rough sur-

face will result in an increase in the value of the emis-

sivity in Gr and a reduction in ar. However, even using

the blackbody value of 1 reduces ar only to 2.0. The

optical transmission region for polished sapphire

(which is alumina based) is 0.14±6.5 mm [22, p. 6-47],

with the peak of the blackbody radiation at 5008C
being 3.75 mm, so infrared transmission through the

ceramic could possibly explain the discrepancy.

Another possibility is that much of the thermal radi-

ation could be re¯ected over several sphere diameters,

signi®cantly increasing the radiative component of heat

transmission. If either of these were the causes, a value

for ar near 3 suggests that the thermal radiation travels

an average distance of about three sphere diameters

before being absorbed. Experiments to test this were

carried out by measuring the intensity of radiation

from a glow-bar held at 5158C, which was transmitted

through a KBr dish containing the small spheres. KBr

has a 94% transparency in the spectral range of inter-

est. A Bomem model M100 infrared spectrometer was

used as a detector, with the background transmission

through the empty dish measured ®rst. The transmitted

radiation fell to approximately 10% after one layer of

spheres and to about 1% after 2 layers, showing that

transmission and re¯ection of the radiation cannot

explain the large value of aear: presumably the strong

scattering by grains in the spheroids makes trans-

mission negligible. Subsequent ®ts to data from lithium

zirconate spheroids [8,23] of similar packing fraction

have given a value for aear of 0.9312 0.004. If ae for

these particles is about 0.9 as estimated in the present

work, this gives a value of ar very close to 1 for the

lithium zirconate work. Therefore, it is believed that

the high value of ar for the alumina spheroids is due to

gas in the small gaps between particles which has dif-

fused out of micropores in the spheroids as has been

seen elsewhere (e.g. [24]), and a value of ar=1.0 will be

used from now on.

Parameters g and B can now be determined by ®t-

ting the data of Figs. 2 and 3 for Ke� to the expression

obtained by substituting Eqs. (7)±(13) into Eq. (6). All

curve ®tting has been done with SigmaPlot 4.0, which

allows simultaneous ®tting of all the P> 0 curves. We

Fig. 7. E�ective thermal conductivity at P= 0 kPa for 1-mm

spheres. Points: experimental data. Lines: theoretical ®ts.

Table 3

Values of ®tting parameters at P=0

Contact+radiation Radiation only

Sphere diameter aeac/hr (mm) aear Rc aear Rc

1-mm 0.3020.32 3.520.2 0.957 3.720.1 0.953

3-mm 3� 10ÿ822 2.420.2 0.985 2.4420.09 0.985
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®tted using as=2.0 as calculated above, and with ai=1

since it is not separable from B 2, allowing g, B, ae, ao
and a to vary. The results are given in Fig. 8 for the 1-

mm spheres; similar results were obtained for the 3-

mm spheres, with the ®tted parameters listed in Table

4 under ``1-gap''. Here Rc is the correlation coe�cient

for the goodness of ®t. The ®tted curves agree reason-

ably well with the experimental data, with the major

discrepancy being between the 41 and 101 kPa curves

at low temperatures where the theoretical curves co-

alesce. Since l is proportional to T/P, this implies that

l< g (i.e. Kg independent of P ) for both curves at low

temperatures but l > g for the 41-kPa curve at high

temperatures, and suggests that a better ®t would be

obtained by having a range of gap sizes which would

allow for di�erentiation between the higher-pressure

curves, as incorporated below.

6.2. Multiple-gap model

The model was modi®ed to include a Gaussian dis-

tribution of gaps, with average gap gav (corresponding
to g in Eqs. (9), (11) and (12)), and standard deviation
s. The addition of s increases the number of ®tting

parameters by one over the single gap model. Because
SigmaPlot does not allow ``loop'' statements in its re-
gressions, the distribution was divided into just eleven

bins between ÿ2s and 2s, centred on the average gap
gav. The expression for Gi for this multiple-gap model
then becomes, in parallel with Eqs. (12) and (9),

GiM � aipB 2

8<:X5
j�ÿ5

fj

h
Kg
�1ÿ eÿ3gj=2l �

� bgjeÿ3gj=2l
i
=gj

9=; �15�

where fj is the Gaussian weighting factor for the jth
bin (with Sfj=1), and gj=gav+2sj/5; aipB

2fj is e�ec-
tively the area with gap gj. All other Gs are unchanged.

The experimental data was ®tted letting gav, B, s, ae,
ao, and a vary under the constraints B > gav > s> 0,
1ea > 0, 1 > ae > 0, 5 > ao > 0. The ®tted curves
are shown as the solid lines in Figs. 2 and 3 for the 1-

mm and 3-mm spheres, respectively, and the ®tted par-
ameters of this 5-parameter multiple-gap ®t are given
in Table 3 under ``M-gap (5 par)''.

7. Discussion of the ®tted results for the 5-parameter

model

Overall, the curves for the multiple-gap theory ®t
the experimental data well, usually within the exper-
imental uncertainty estimated from the scatter in the

Fig. 8. E�ective thermal conductivity for 1-mm alumina

spheres; numbers on the ®gure are pressures in kPa. Points:

experimental data as in Fig. 2. Lines: theoretical ®t with the

one-gap model.

Table 4

Values of ®tting parameters for Ke�(T, P )

Sphere size Fit g or gav (mm) s (mm) B (mm) a ae ao Rc

1-mm 1-gap 2.420.6 ± 94215 1a21.5 0.8020.05 5a23.7 0.969

M-gap (5 par) 5.321.1 2.620.4 90213 1a22.8 0.8220.18 1.821.4 0.979

M-gap (2 par) 4.020.7 gav/2.06 5126 1 0.9 Eq. (14) 0.969

Eng. (2 par) 4.321.2 gav/2.06 53210 1 0.9 1 0.998b

3-mm 1-gap 2.020.7 ± 122219 1a21.9 0.5720.08 6.421.7 0.916

M-gap (5 par) 5.223.1 2.520.9 143220 2� 10ÿ1222 0.8220.12 3.722.5 0.970

M-gap (2 par) 7.521.3 gav/2.06 130213 1 0.9 Eq. (14) 0.966

Eng. (2 par) 7.623.6 gav/2.06 126236 1 0.9 Eq. (14) 0.996b

Xu et al. Eng. (2 par) 4.620.9 gav/2.06 3929 1 0.9 Eq. (14) 0.996b

a Parameter has gone to its maximum allowed value.
b Fit to the He Ke�(P ) curve.
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experimental points, and with correlation coe�cients

of about 0.97. The theory clearly incorporates the
overall dependance on T and P correctly, and the
values of the geometrical constants are too close to

their predicted values to be accidental. The major dis-
crepancy is with the results near 4 kPa, for which the
theoretical curve has too shallow a slope for both sizes

of spheres. Using the values for ar0 3 obtained from
the ®t at P = 0 kPa rather than ar=1 gave a steeper

slope and therefore a slightly better ®t to the 4 kPa
data, but ®ts which were too high for the high-pressure
data at high temperatures. This is to be expected if the

high value of ar is due to the emission of gas from the
particles, because this will have its strongest e�ect at
low system pressures but will over-estimate the radi-

ative T 3 conductance at high temperature. Because the
assumption of multiple gaps is clearly necessary to get

a reasonable ®t to the data, we will restrict further dis-
cussion to this model from now on.
The values of the ®tted parameters for gav and B

agree within a factor of 2 with rough measurements of
these parameters obtained from optical photographs of

the spheroids focussed on an equator, and from elec-
tron micrographs. B was estimated by drawing a
straight line between successive peaks on the equator,

and gav as 1/3 the distance from this line to the bottom
of the valley below the line. A statistical analysis of
these parameters from spheroids that have been cross-

sectioned, to give a clear view of the structure at the
equator, is being carried out to try to eliminate the

need to treat them as ®tting parameters.
As might be expected from a model with ®ve ®tting

parameters, the parameters are quite interdependent as

indicated by values close to unity (typically 0.99) for
the ``dependency'' value provided by the SigmaPlot re-
gression analysis. For example, from Table 4 it is clear

that the model is very insensitive to the value of the
accommodation coe�cient a, which always has an

uncertainty greater than 100%, and which for the 1-
mm spheres has gone to its upper limit of one. Its
value could be altered intentionally from 0.5 to 2 with

negligible change in the other ®tting parameters. This
is to be expected since b, which contains a, is multi-
plied by gj exp(ÿ1.5 gj/l ), so small changes in gi can

compensate for quite large changes in a. Since a0 1
for rough surfaces with multiple scattering of a gas

molecule before it reaches equilibrium, we will assume
this value and drop a as a ®tting parameter from the
model. Similarly, the values of B 2 and gav might be

expected to be quite interdependent, since B 2 and gj
exp(ÿ1.5 gj/l ) are also multiplicative at low values of
gj/l.
The theoretical model is robust. As long as Sigma-

Plot indicated a good convergence of the ®tted curves

to the experimental data, changing within reasonable
limits the initial values of the parameters being ®tted

gave the same ®nal results within the statistical uncer-
tainty. Moreover, all the values for ae and ao are close

to those expected, and only went to the limits to which
they were constrained in the case of ao for the 1-gap
model. If we ignore the short-range roughness and use

a typical value of l=1.9 mm, Eq. (14) gives a value for
ao of 2.6 and 3.8 for the small and large spheres re-
spectively, compared to the ®tted values of 1.8 2 1.4

and 3.722.5. These agree within the statistical uncer-
tainty of the ®tted parameters. An analysis of conduc-
tivity measurements for very smooth and spherical ball

bearings would be a particularly interesting test of Eq.
(14), since B should then be essentially zero.
It is interesting to look at the relative magnitudes of

the conductances. For example, at 101 kPa for the 1-

mm spheres, Gr, Go, Gi, and Gs are, respectively, 4.6 �
10ÿ6, 6.4 � 10ÿ4, 7.7 � 10ÿ3, and 3.2 � 10ÿ2 W Kÿ1 at
338 K, and 5.2 � 10ÿ5, 9.5 � 10ÿ4, 1.0 � 10ÿ3, and 1.2

� 10ÿ2 W Kÿ1 at 759 K. (As has been pointed out, the
value of Gc is too small and uncertain for a meaningful
comparison.) This shows that Gi is the largest term in

the conductivity across the gap for all temperatures
and cannot be ignored in spite of the small area
involved (pB 2 1 0.04pR 2). Moreover, since Gi depends

strongly on irregularities in the shape of the spheroids,
it is clear that a reliable estimate of the e�ective con-
ductivity of packed beds cannot be made without some
knowledge of these irregularities.

8. Further reduction in the number of ®tting parameters

Even with the choices for a and ar discussed above,
the above model still has ®ve ®tting parameters: gav, B,
s, ae and ao. However, the ®tted curves give values of
gav/s=2.04 and 2.08 for the 1- and 3-mm spheroids,

respectively. A very similar value of 2.1 has been
obtained by us for both lithium zirconate [8] and beryl-
lium spheroids [13], and values close to 2.06 have been

obtained for all ®ts of our alumina data under slightly
di�erent versions of the theory. Therefore, we will
assume a value of 2.06 is generally applicable. A value

near 2 is clearly reasonable, given that one would
expect a signi®cant proportion of gaps of width near
zero, and 95% of the gaps must be within 2s of the
mean value for a Gaussian distribution.

We have also shown that the ®tted values of ao
agree with the results from Eq. (14) within the statisti-
cal uncertainties, so we will use this equation from

now on. Finally, the values of ae also agree with the
value of 0.9 estimated from the packing density within
the stated uncertainty, so we will use ae=0.9 hence-

forth. This leaves only gav and B as ®tting parameters,
both of which are physically measurable. Fitting all
the curves except that for P = 0 kPa under these
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assumptions yields the dashed curves of Figs. 2 and 3,
and the ®tted parameters labelled ``M-gap (2 par)'' in

Table 4. There is little di�erence in goodness of ®t
between these curves and those of the 5-parameter ®t,
and the values of gav are similar, although the ®tted

value of B is substantially smaller for the 2-parameter
®t for the 1-mm spheroids. The ``dependency'' value
from SigmaPlot for gav and B was 0.933, which still in-

dicates a fairly high interdependency between these
two parameters. This is not surprising as discussed
above, but does emphasize that even a good ®t to all

the data does not guarantee that the ®tted parameters
are the true values. It is clear that values of gav and B
measured directly from the spheroids must be obtained
before the assumed values for the a parameters can be

taken to be correct. This work is currently underway.
For engineering purposes and in the absence of un-

ambiguous experimental values of gav and B, an ade-

quate ®t often may be obtained using data collected at
a single temperature, when either Gc or Gr is negligible;
that is, for hard materials, or for materials at low tem-

peratures, respectively. This would reduce considerably
the amount of experimental data required to provide
acceptable predictions, avoiding the long times

required for the bed to reach equilibrium at a number
of temperatures. This will be illustrated using the data
for the 1-mm spheres at 573 K in Fig. 4. The model
parameters are again only gav and B. For hard ma-

terials such as alumina we can ignore conduction
through the contact points, and take as=2.0, ae=0.9,
a = 1 and s=g/2.06 as discussed earlier, and use Eq.

(14) for ao with the assumption that hr/R is negligible.
We then ®t to the Ke�(P ) data at 573 K to get the
®tted curve for Ke�(P ) shown for the 1-mm particles

as the line in Fig. 4, and the values for gav and B listed
in Table 3 as the ``Eng. (2 par)'' results. A curve simi-
lar to that of Fig. 4 was obtained for the 3-mm spher-
oids, with the values obtained for gav and B also listed

in Table 4. These values of gav and B are then used
with no further ®tting to generate the dotted lines in
Figs. 2 and 3. There is very little di�erence between

these curves and those obtained earlier, and they are
acceptable for many purposes. The values of gav and B
obtained in this manner do not di�er appreciably from

those for the M-gap (2 par) values.

9. Comparison with other work

In this section our theoretical model has been com-
pared with the experimental data of Xu et al. [13] for
1-mm diameter beryllium spheroids in the presence of

He and N2 gases between 30 and 408C. This compari-
son is an excellent test of the model, for two reasons.
First, Xu et al. have already used this data as a test

bed for four di�erent theoretical models. Second, since
the same spheroids were used for both gases, once the

adjustable parameters have been obtained by ®tting
the He data there are no free parameters to adjust for
®tting to the N2 data; only the mass, diameter and CV

per molecule must be changed. For He the latter two
are 0.218 nm and 3k/2, whereas for N2 they are
0.376 nm and 5k/2 [20, pp. 266, 248]. However, the

experimental value for the ratio of the thermal conduc-
tivity of He gas to that of N2 is 6.08 at atmospheric
pressure [20, p. 268], whereas the theoretical ratio

obtained from Eq. (10) is 4.72. Therefore we have mul-
tiplied the value for Kg from Eq. (10) by 0.777, in cal-
culating Ke� for N2. The same accommodation
coe�cient, a = 1, was used for both He and N2. The

thermal conductivity of Be at 300 K is 200 W mÿ1

Kÿ1 [25].
For our ®t to the He data we have set ae=0.9, as

=2, s=gav/2.06 and T=308 K, and used Eq. (14) for
ao, in order to ®t gav and B. Radiation is negligible at
the temperature of the experiments, so the P=0 value

of conductivity is due solely to contact between
spheres. The original data were no longer available
[26] so the data were taken from the published graphs.

The uncertainty in the data for Ke� can be estimated
from the spread in the original data points at P = 0
from about 0.45 to 0.55 W mÿ1 Kÿ1. We have taken
the P = 0 point to be at 0.50 for the initial ®t, giving

the solid lines in Fig. 9. However, the N2 curve is also
tied to this point, so lowering the P = 0 value to 0.47
(which is within the limits of the experimental uncer-

tainty) in the ®t to Gc gives the results shown by the
dotted lines. The resulting parameters for the best ®t
to the data for He are given in Table 4 under ``Xu et

al.''

Fig. 9. E�ective thermal conductivity of beryllium spheres.

Large points: experimental data (Xu et al. [13]). Lines: theor-

etical ®ts.
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It is seen that the beryllium data are ®tted extremely
well by the theory. The value of gav=4.6 mm is a few

times larger than the value of 1±2 mm estimated [13]
for the small-scale roughness, as would be expected for
the undulations. Ignoring radiation means that at

P=0 we have

Keff �0� � aeGc=2R � aeacKs�pr2c=hr�=2R, �16�

where rc is the average radius of the contact area and

hr/ac is the average length of the contact. Equating Eq.
(16) to the experimental value of 0.47 and using
hr=1 mm as estimated [13], gives (rc/R )203.3 � 10ÿ6,
for ac set equal to one. This is less than the maximum

limit of 10ÿ5 considered to be acceptable by Xu et al.
[13] and so is a reasonable value. The present ®ts are
better than those by any of the models considered by

Xu et al., although it is di�cult to give a full compari-
son without knowing exactly how many adjustable
parameters Xu et al. used in their ®ts.

Excellent ®ts with reasonable parameters have also
been obtained [23] for data [8] on lithium zirconate
spheroids at temperatures up to 1600 K, at which tem-
perature the radiative contribution to the thermal con-

ductivity is at least as important as the other
contributions. The model can also explain the rather
surprising observation that various packed beds of 1-

mm-diameter spheroids in 100 kPa of helium gas, con-
sisting of many di�erent materials with likely quite
di�erent surface textures, (e.g. [15]) have thermal con-

ductivities which are very comparable in magnitude,
between about 1.3 and 2.5 W mÿ1 Kÿ1, even though
the bulk conductivities of the solid vary over a much

wider range than this. First, it is clear why the thermal
conductivity is largely independent of the material: if
the conductance Gs of the solid is much greater than
Gr, Gc, Go or Gi, then the total conductance G in Eq.

(6) is essentially independent of Gs. Moreover, if Gc is
negligible compared to Go+Gi, as will generally be the
case except at low pressure because of the very small

contact area, then the overall conductance will depend
only on Gr and Go+Gi, with Gr being small for tem-
peratures less than 1000 K as in the cases being con-

sidered [15]. Thus the bulk conductivity has been
eliminated as a major factor in the bed conductivity. It
is now useful to look at the variation of Go and Gi as
B and gav are changed, for the alumina spheroids. For

values of ( gav, B ), in microns, of (4.3, 53), (1, 10), and
(0.1, 1), the ``Eng. (2 par)'' ®t to the 1-mm spheroids
gives values of (Go, Gi) in units of 10ÿ3 W mÿ1 Kÿ1 of

(0.95,1.0), (1.76, 0.061), and (1.83, 0.00058), respect-
ively. That is, the value of Go increases only slowly as
gav and B are decreased, because from Eq. (14) the

value of ao depends only logarithmically on B 2 (and
even more weakly for B 2/R < j ), whereas Gi varies
directly as B 2 and so becomes quickly negligible, with

their sum changing only little from 1.96 to 1.83 for the
three situations considered here. It is reasonable to

assume that BE0.1R and gavE0.1B for a particle to
be referred to as ``spherical'', so these results for
alumina are likely to remain qualitatively true for

other spheroids as well.

10. Conclusions

The e�ective thermal conductivity has been
measured for packed beds of alumina spheroids in

static helium gas from 0 to 100 kPa and 100 to 5008C.
These results are in good agreement with results by
other authors at a few discrete temperatures and 100
kPa. A new theoretical model for packed beds of

spheroidal particles has been developed which incor-
porates measurable parameters for those gaps between
particles which are comparable in width to the mean

free path. Such gaps must exist between irregularly
shaped spheroids and, although small in area, can
dominate the conduction across the gaps. When a dis-

tribution of such gaps is incorporated into the model,
an excellent ®t to experimental data over a wide range
of temperature and pressure is obtained with a rela-

tively small number of well de®ned physical par-
ameters, all of which attain reasonable values. The ®ts
remain good when the number of adjustable par-
ameters is reduced to two, the average width and

radius of the small gaps between particles, although
the assumptions remain to be tested using measure-
ments of these parameters on actual particles. It is

shown that a satisfactory approximation may be
obtained by using data taken at a single temperature,
for a range of pressures. The model also ®ts other pub-

lished data well.
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Note added in proof. Subsequent modelling of other
materials [23] has shown the Eq. (7) is better written as
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G � Gr�Go� GsGpar

Gs�Gpar
, where Gpar=Gi+Gc. This change

has a negligible e�ect on the current paper.
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